We depend on plants to counteract the greenhouse effect. Therefore, the solution to climate change necessarily involves preserving as many vegetation zones. The high adaptability that has plants and allowing them to withstand large changes over billions of years is to be used as a basis for scientific studies that allow us to assess the situation in future climate conditions.

The data presented in this study were obtained from three species planted in the Region of the eastern plains. Samplings were carried out in a demonstration plot located in the Metropolitan Park Maria Lucia where cultivation is more representative. Thus, although growths in other areas or varieties are different, the general has resulted in the whole of our region.

This paper presents data capture CO2 partial (only takes two years of research, for a total of ten) per plant for comparison between forest species, but for greater consideration of balances in calculating total there which take into account the results per hectare by the knowledge of the density of planting.

Among all tree species analyzed in this work is the Melina (Gmelina arborea) which showed higher rates of CO2 uptake, both in terms of the surface as per tree. In this case becoming more lush trees, more leaf area and, therefore, more capable of attracting CO2.

Keywords: Capture, Carbon, forest species, climate change.